Suppression of mTOR pathway and induction of autophagy-dependent cell death by cabergoline
نویسندگان
چکیده
Cabergoline (CAB), the first-line drug for treatment of prolactinomas, is effective in suppressing prolactin hypersecretion, reducing tumor size, and restoring gonadal function. However, mechanisms for CAB-mediated tumor shrinkage are largely unknown. Here we report a novel cytotoxic mechanism for CAB. CAB induced formation of autophagosome in rat pituitary tumor MMQ and GH3 cells at the early stage through inhibiting mTOR pathway, resulting in higher conversion rates of LC3-I to LC3-II, GFP-LC3 aggregation, and increased autophagosome formation. Interestingly, CAB treatment augmented lysosome acidification and resulted in impaired proteolytic degradation within autolysosomes. This blocked the autophagic flux, leading to the accumulation of p62 aggregation and undigested autolysosomes. Knockdown of ATG7, ATG5, or Becn1, could significantly rescue the CAB-mediated cell death of MMQ cells (p < 0.05). CAB-induced autophagy and blockade of autophagy flux participated in antitumoral action in vivo. In conclusion, our study provides evidence that CAB concomitantly induces autophagy and inhibits the autophagic flux, leading to autophagy-dependent cell death. These findings elucidate novel mechanisms for CAB action.
منابع مشابه
Eupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway
Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...
متن کاملFisetin induces autophagic cell death through suppression of mTOR signaling pathway in prostate cancer cells.
The mammalian target of rapamycin (mTOR) kinase is an important component of PTEN/PI3K/Akt signaling pathway, which is frequently deregulated in prostate cancer (CaP). Recent studies suggest that targeting PTEN/PI3K/Akt and mTOR signaling pathway could be an effective strategy for the treatment of hormone refractory CaP. Here, we show that the treatment of androgen-independent and PTEN-negative...
متن کاملAmpelopsin-induced autophagy protects breast cancer cells from apoptosis through Akt-mTOR pathway via endoplasmic reticulum stress
Our previous study has shown that ampelopsin (AMP), a flavonol mainly found in Ampelopsis grossedentata, could induce cell death in human breast cancer cells via reactive oxygen species generation and endoplasmic reticulum (ER) stress pathway. Here, we examined whether autophagy is activated in AMP-treated breast cancer cells and, if so, sought to find the exact role and underlying molecular pr...
متن کاملResveratrol induces autophagy by directly inhibiting mTOR through ATP competition
Resveratrol (RSV) is a natural polyphenol that has a beneficial effect on health, and resveratrol-induced autophagy has been suggested to be a key process in mediating many beneficial effects of resveratrol, such as reduction of inflammation and induction of cancer cell death. Although various resveratrol targets have been suggested, the molecule that mediates resveratrol-induced autophagy rema...
متن کاملSalvianolic acid B, a novel autophagy inducer, exerts antitumor activity as a single agent in colorectal cancer cells
Salvianolic Acid B (Sal B), an active compound extracted from the Chinese herb Salvia miltiorrhiza, is attracting more and more attention due to its biological activities, including antioxidant, anticoagulant and antitumor effects. However, autophagy induction in cancer cells by Sal B has never been recognized. In this study, we demonstrated that Sal B induced cell death and triggered autophagy...
متن کامل